
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Converting a PROIV Application 
from Pro-ISAM to an RDBMS



Converting a PROIV Application from Pro-ISAM to an RDBMS i
 

PROIV is a trademark of PROIV Technology, Inc. 

AS/400 is a registered trademark of International Business Machines Corporation 

Btrieve and Pervasive.SQL are trademarks of Pervasive Software Inc. 

C-ISAM is a trademark of INFORMIX Software Incorporated 

FrameMaker and Acrobat Reader are registered trademarks of Adobe Systems Incorporated 

Harvest is a registered trademark of PLATINUM technology, inc. 

Ingres is a registered trademark of Computer Associates International Inc. 

Microsoft, Microsoft Windows, MS Windows, Microsoft Windows NT, Windows NT, Microsoft Word, and MS Word, are 
registered trademarks of Microsoft Corporation. 

Oracle is a trademark of Oracle Corporation. 

Sybase is a trademark of Sybase Corporation. 

UNIX is a registered trademark of The Open Group. 

All marks and product names referred to in this document are trademarks or registered trademarks of their respective 
owners. 

No part of this document may be reproduced, transmitted, adapted, stored in any retrieval system or translated into any 
language in any form without the prior written permission of PROIV Technology, Inc. 

Internet: http://www.proiv.com  

© 2002 PROIV Technology Incorporated.  All rights reserved. 

THE AMERICAS
PROIV Technology, Inc

101 Academy, Suite 200
Irvine, CA 92612

USA
Tel: +1 (949) 823-1000
Fax: +1 (949) 823-1010

EMEA
PROIV Ltd.
Kings Hall

Parsons Green
St Ives

Cambridgeshire
PE27 4WY

UK
Tel:   +44 1480 494330
Fax:  +44 1480 494039

http://www.proiv.com/


Document Amendment 

 
Version Date Author Description 

1.0 07/03/03 R Gadsby MIMIS Initial document detailing the procedures needed 
to convert a PROIV application to an RDBMS. 



Converting a PROIV Application from Pro-ISAM to an RDBMS 2
 

Table of Contents 

Document Amendment................................................................................................. 1 

Table of Contents.......................................................................................................... 2 

Overview........................................................................................................................ 4 
Potential Issues ......................................................................................................................... 4 
Benefits of an RDBMS .............................................................................................................. 5 

Low impact conversion route ...................................................................................... 7 

Ideal conversion route.................................................................................................. 8 
Data analysis ............................................................................................................................. 8 

Top down analysis .............................................................................................................. 9 
Bottom up analysis.............................................................................................................. 9 

Re-engineer application ............................................................................................................ 9 
Remove cross reference files ............................................................................................. 9 
Remove long locks............................................................................................................ 10 
Replace simple updates.................................................................................................... 11 
Replace sort select logics ................................................................................................. 11 
Analyse transactions......................................................................................................... 12 

Staged conversion route ............................................................................................ 15 
Stage 1 .................................................................................................................................... 15 
Stage 2 .................................................................................................................................... 16 
Stage 3 .................................................................................................................................... 17 

Advanced techniques ................................................................................................. 18 
TP_ROLLBACK=Y .................................................................................................................. 18 
SQL_TRANSACTION_ERROR=Y.......................................................................................... 18 
SQL_CURSORS=<num>........................................................................................................ 19 
SQL_NOSIG=Y ....................................................................................................................... 19 
CONNECTION=<user/password/dsn>.................................................................................... 19 
OS Authentication ................................................................................................................... 20 
PRODB_CHARSET=<value> ................................................................................................. 20 
LOCKED_ROWS_RETURNED=Y.......................................................................................... 21 
ORACLE_DLLNAME=<dll name>........................................................................................... 21 
REPARSE=Y........................................................................................................................... 21 
Savepoint................................................................................................................................. 21 



Converting a PROIV Application from Pro-ISAM to an RDBMS 3
 

&#@SQL-SORT ...................................................................................................................... 22 
Full function SQL..................................................................................................................... 22 

Type 1 ............................................................................................................................... 22 
Type 2 ............................................................................................................................... 23 
Non-SELECT statements ................................................................................................. 24 

Dynamic SQL .......................................................................................................................... 24 
Logical databases ................................................................................................................... 26 
ALIAS logic command ............................................................................................................. 28 
&#@SUPP-COMM .................................................................................................................. 29 
Committable cycle ................................................................................................................... 29 

Reports and updates......................................................................................................... 30 
Screens............................................................................................................................. 30 

SQL optimization ..................................................................................................................... 30 
From clause ...................................................................................................................... 30 
Where clause .................................................................................................................... 30 
Indexes ............................................................................................................................. 30 
Multiple PROIV file definitions .......................................................................................... 31 
Things to avoid.................................................................................................................. 31 

Kernel response waiting message .......................................................................................... 31 
ODBCCMPT............................................................................................................................ 32 



Converting a PROIV Application from Pro-ISAM to an RDBMS 4
 

Overview 

The intention of this document is to describe several methods for converting an existing 
application written in PROIV using Pro-ISAM files to use Oracle, SQL Server, or other 
RDBMS tables.  This document deals solely with the PROIV coding side of the 
conversion.  It is assumed that the user will acquire the knowledge to install, set up, tune 
and administer their chosen database system. 
 
Some of the stages in the process of conversion can be automated.  If you need help with 
this, or you would like PROIV Ltd to convert your system for you, you should contact 
your account manager. 
 
Three methods for conversion will be described.   
 

1. We will start by describing a low impact conversion route.  This method seeks to 
provide the quickest route to get an application up and running using an RDBMS 
whilst maintaining compatibility with a system running with a Pro-ISAM filing 
system.  Note, however, that this route takes no advantage of features available 
with an RDBMS.  It is likely that, without an increase in the specification of the 
system running the PROIV kernel, a noticeable decrease in performance will be 
experienced. 

 
2. The second method will describe the correct method of conversion in order to 

achieve the greatest benefit from the decision to convert to an RDBMS.  
 

3. The third and final method describes a staged method of converting to an 
RDBMS.  The initial stage will lead to a slight degradation in performance.  Each 
subsequent stage will gradually improve the performance. 

 

Potential Issues 
When converting from Pro-ISAM to an RDBMS you are likely to experience various 
issues if the conversion is not fully analysed and completed.  Amongst the issues that you 
may experience are: 
 

1. Increased system hardware requirements.  In order to achieve the same 
performance level as Pro-ISAM more resources are required.  

2. Locking problems.  Some files will be locked for long periods of time, reducing 
the throughput of the application. 



Converting a PROIV Application from Pro-ISAM to an RDBMS 5
 

 
The following sections of this document will show ways to maintain the performance of 
your system and still reap the benefits of converting to an RDBMS.  
 

Benefits of an RDBMS 
Using a relational database a unit of work is defined as a transaction.  If this transaction 
does not complete then all data updates belonging to that transaction will be ‘rolled 
back’.  With ISAM storage systems, which do not have rollback capability, the code 
tends to be written such that it processes work files to ensure that updates only occur at 
the end of a transaction.  The use of an RDBMS therefore reduces the number of files that 
are required in a system and also allows better control over data integrity.  With ISAM 
systems where data is updated at the end of the transaction data integrity can still be 
compromised if the update function fails for any reason. 
 
Because an RDBMS supports a transport mechanism, for remote access of the data, the 
PROIV kernel can be on a separate computer from the database.  This allows for 
additional security of the data.  This separation of the presentation (GUI client), business 
rules (PROIV kernel) and database is known as a 3-tier system.  Each layer of the 3-tier 
system can be modified easily without seriously impacting the other 2 tiers.  For example, 
it is possible to change the database from Oracle to SQL Server with the only 
requirement being a change to the pro4.ini and the creation of an ODBC configuration 
entry on the PROIV kernel tier. 

 
 
 
Using an RDBMS the complexity of an application is reduced.  This is brought about by, 
for example, the removal of the need to maintain cross-reference files.  It is also possible 
in some cases to replace a complete PROIV function with a single SQL statement. 
 

3-Tier System

GUI Client PROIV Kernel Database



Converting a PROIV Application from Pro-ISAM to an RDBMS 6
 

Using an RDBMS increases the accessibility of the data to third party tools.  Writing 
well-presented reports in PROIV is not easy.  By using an RDBMS it is possible to use 
industry standard reporting tools, such as Cognos Impromptu or Seagate Crystal Reports, 
which can be run by users with little or no knowledge of computer programming.  

 



Converting a PROIV Application from Pro-ISAM to an RDBMS 7
 

Low impact conversion route 

This method of converting from Pro-ISAM or C-ISAM to an RDBMS should only be 
considered if it is essential to maintain compatibility with non-RDBMS installations of 
the same system.  Using this conversion methodology none of the advantages of using a 
RDBMS will be used and a significant performance overhead will be experienced.  The 
performance problems can be worked around by using a faster processor and installing 
more RAM than would be needed to achieve the same throughput had the system been 
implemented using a non-RDBMS file system. 
 
This conversion method requires minimal changes to the application.  The changes 
required can be automated easily, if access to the bootstrap file definitions is available.  
All that needs to be done for this conversion route is to change the file definitions to 
specify the external file and field types and then recompile the affected PROIV functions. 



Converting a PROIV Application from Pro-ISAM to an RDBMS 8
 

Ideal conversion route 

 
In an ideal world, where there are no deadlines and there is no limit on the resources that 
can be employed, this is the method that should be employed to convert a flat filing 
system to an RDBMS.  This route can be broken down into three phases:  analysis of the 
data items in the existing file system; re-engineering of the application functionality to 
take account of the new data structure; and conversion of data from Pro-ISAM to the 
RDBMS. 
 
In effect this is a rewriting of the application, using the existing application as the basis 
for the design specification.  However the business rules from the existing application 
will be re-used in the new application. 
 

Data analysis 
In order to achieve the best results from the use of an RDBMS the data needs to be 
normalized.  The data items can either be analysed from the top downward or the bottom 
upward.  A typical PROIV application written to use either Pro-ISAM or C-ISAM will 
not use fully normalized data.  Typically there will be file definitions that contain field 
arrays or there will be data that relates to the same key information spread across multiple 
file definitions. 
 
The separation of arrays on PRO-ISAM files to individual tables in the RDBMS can 
significantly improve performance.  I have seen an application that was moved from 
PRO-ISAM to Oracle without data analysis where one file had an array containing 
around 200 elements.  The resultant table in Oracle had over 300 columns.  Each time the 
table was accessed an SQL statement was created that contained over 10,000 characters.  
The table was used in a major update, where it was accessed thousands of time, resulting 
in a significant volume of traffic over the network between the PROIV kernel and the 
Oracle database.  By creating a separate table for the information contained in the array it 
would have been possible to access just the individual elements that were required for the 
update, instead of retrieving and then writing back every single element. 
 
There are three stages to data normalisation. 

1. Remove repeating groups � 1st Normal Form 
2. Remove partial dependencies � 2nd Normal Form 
3. Remove indirect dependencies � 3rd Normal Form 

 



Converting a PROIV Application from Pro-ISAM to an RDBMS 9
 

A system that uses Pro-ISAM files will also probably use temporary work files to store 
the data being entered or updated prior to actually updating the master files.  With an 
RDBMS it is not necessary to use work files because the data can be rolled back if an 
error occurs or the user wishes to cancel the current operation. 
 

Top down analysis 
In the top down analysis methodology the items that uniquely identify groups of data are 
established first.  Having found these unique identifiers the data items required to define 
the group need to be allocated.   
 

Bottom up analysis 
In the bottom up analysis methodology the data items required are first identified.  
Having done this the identifier that uniquely defines the occurrence of the item is 
established.  All items that use the same identifier are then grouped together to form a 
table. 
 

Re-engineer application 
Having established the normalized form of the data and created the tables with their 
primary index constraints in the RDBMS it is now necessary to change the existing 
PROIV functions to use the new structure of the data.  The amount of effort required to 
effect this modification depends to a large degree on whether the original Pro-ISAM file 
system was normalized or not and whether master file updates were delayed to the end of 
the transaction. 
 

Remove cross reference files 
The first stage is to remove the maintenance of cross-reference files from the functions, 
as this is not necessary with RDBMS.  Cross-reference files are used to access flat file 
systems using alternative key sequences.  Typically the file would contain the alternate 
access fields and the key fields to the main file.  When retrieving the data the PROIV 
function would first read the cross-reference file and then access the main data file.  In an 
RDBMS this is achieved, where necessary, by adding additional indexes to the data table 
and creating a PROIV file definition specifying the alternate key fields and all the data 
fields of the main data file.  This definition would have the table name in the alternate file 
name field of the file definition header. 
 
For example, in a Pro-ISAM system, to be able to access a customer file in postcode 
sequence efficiently you would need to create two files, as follows: 



Converting a PROIV Application from Pro-ISAM to an RDBMS 10
 

 
CUSTOMER CUSTPCOD 
K CUSTCODE K POSTCODE 
A CUSTNAME K CUSTCODE 
A ADDRESS   
A POSTCODE   
 
Using these file definitions to list the customer names in postcode sequence you would 
have to first read CUSTPCOD and then read the CUSTOMER file.  In the customer 
maintenance function you would have to delete the record from CUSTPCOD and then 
add a new record if the postcode for a customer was changed.  When we convert this to 
an RDBMS we would create the following PROIV file definitions: 
 
CUSTOMER CUSTPCOD 
K CUSTCODE K POSTCODE 
A CUSTNAME K CUSTCODE 
A ADDRESS A CUSTNAME 
A POSTCODE A ADDRESS 
 
We only need to create the table in the RDBMS for the CUSTOMER file.  The 
CUSTPCOD file would have the alternate name set to CUSTOMER.  When we list the 
customers in postcode sequence we now only need to access the CUSTPCOD file.  When 
maintaining the CUSTOMER file we now no longer need to delete records from and add 
records to CUSTPCOD, as this done automatically for us by the RDBMS. 
 
 

Remove long locks 
Next, commonly accessed records that will suffer from long lock problems under an 
RDBMS have to be identified.  A typical example of this is an odometer file (a control 
file used to generate the next available sequence number).  In a flat file system odometer 
files would normally be accessed by an LSCALL or global LSCALL that would read the 
file to retrieve the current value, increment it and then write the value back.  The record 
would then be available for another user to access, whilst the rest of the transaction was 
completed.  With an RDBMS the information on the updated odometer record does not 
become available for use by others until the transaction is committed and will lock the 
other users out until the commit is executed.  For this reason odometer and other 
commonly accessed files should either be moved outside of the transaction, or should be 
moved to near the end of the transaction and after all user input has been completed. 
 
Another way that records can be locked for an extensive period of time is in paging 
screen cycles when the primary file is in change or both mode.  In this situation each 
record that is read when paging down will be locked until the transaction is committed.  
To prevent records that have not been changed being locked a file read in look up mode 
should be inserted as the primary file for the cycle. 



Converting a PROIV Application from Pro-ISAM to an RDBMS 11
 

 

Replace simple updates 
Some logical updates/cycles can be replaced with SQL statements.  A typical example of 
this is an update that selects a group of records and then modifies one or more fields, e.g. 
select all employees for a company that have been employed for 3 years and increase 
their holiday entitlement by one day.  For a non-RDBMS this would be achieved by using 
a SEL-ONLY on the company and then DSELing any employee that has been employed 
for less than 3 years or more than 4 years.  The holiday entitlement for the remaining 
records can then be incremented.  To achieve the same result in an RDBMS a single SQL 
statement could be used.  The following example statement assumes that start-date is held 
using the PROIV internal date format and ignores leap years: 
 

#DATE = @DATE
SQL

UPDATE employee SET holiday = holiday + 1 WHERE company = '005' and
start-date - :#DATE BETWEEN (3 * 365) AND (4 * 365)

ENDSQL 
 
Another example of a logical update that can be replaced with a single SQL statement is 
the kind that is used to count, or total up the value of one or more fields on, a group of 
records.  To achieve this using SQL a dummy PROIV file definition is required to contain 
the results of the SQL statement.  This file should then be specified as a secondary file in 
a cycle and the before read logic for the file should contain the required SQL statement, 
e.g. 
 

SELECT COUNT(*) FROM INVLINE WHERE INVNO = :$INV_NO

or  
SELECT SUM(TRANSACT-AMOUNT), SUM(DISCOUNT-AMOUNT) FROM INVLINE WHERE INVNO =
:$INV_NO

 
The results of the SQL is accessible in the function using the fields from the PROIV file 
definition, which must match the result column definition of the SQL statement in terms 
of type and must also be large enough to contain the results. 
 
The dummy file definition is defined as an external file type for the chosen database.  All 
fields on the file definition must have the appropriate external data type set.  However a 
table does not need to be created in the database for the file definition. 
 

Replace sort select logics 
Wherever possible the use of sort/select logic to reduce the number of returned rows from 
a table should be avoided.  It is far more efficient to avoid selecting the rows in the first 
place, by using additional clauses on the SELECT statement in the default logic of the 
cycle.  For example, the following two logics can be replaced with one SELECT 
statement that would be far more efficient. 
 
Default logic 
 COMPANY = $COMP-SEL



Converting a PROIV Application from Pro-ISAM to an RDBMS 12
 

N.b. care must be taken when suppressing the PROIV default commit behaviour 
because it is possible to lose all, or some of, the work performed in a session if the 
data is not committed prior to logging out of PROIV. 

SEL-ONLY(COMPANY) 
 
Sort/select logic 
 IF EMP-STATUS = ‘D’,’X’

DSEL
ENDIF
IF EMP-PAYPER = ‘W’

DSEL
ENDIF 

 
Can be replaced with the following Default logic 
 SQL

SELECT FROM EMPLOYEE WHERE COMPANY = :$COMP-SEL
AND EMP-STATUS NOT IN (‘D’,’X’) AND EMP-PAYPER <> ‘W’

ENDSQL 
 

Analyse transactions 
In a typical application there are two general types of transactions.  The first type is 
interactive, takes a relatively long time to complete and may span multiple PROIV 
functions.  The second type is non-interactive, takes a relatively short time to complete 
and occurs multiple times in a single function. 
 
The first of these transaction types may require the default PROIV commit action to be 
switched off, particularly if the update of the files within the transaction is spread over 
several functions.  This is effected by issuing ENABLE(&#@SUPP-COMM) in a logic 
prior to the start function of the transaction.  The transaction begins when the first file 
access occurs, so the logic can be in the same PROIV function.  If this is not the only 
transaction for which the suppress commit flag is being enabled it is a wise precaution to 
issue an explicit commit first.  When the transaction is complete the 
DISABLE(&#@SUPP-COMM) command should be issued.  This will cause the 
transaction to be committed when PROIV gets to the next natural commit point. 
 

 
 
The second, non-interactive, type of transaction can cause a large number of table rows to 
be locked from access by other users.  It can also lead to heavy disk usage by the 
database in order to store the roll back information prior to committing.  Additionally, if 
an error occurs, all the updates within the PROIV function will be rolled back, which may 
take some considerable time.  In order to reduce the amount of uncommitted data that has 
to be held by the database in its rollback segment transactions should be committed when 
complete, or after a certain number of transactions have been completed.  There are three 
methods for committing data being processed by a single PROIV function. 
 

1. Use the iteration counter (Oracle only). 
2. Exit the function on a regular basis. 



Converting a PROIV Application from Pro-ISAM to an RDBMS 13
 

3. Issue explicit commits, e.g. #X = COMMIT(). 
 
Using the iteration counter is a quick and easy way of committing transactions 
periodically.  The counter can be set using a numeric literal, or by using either a numeric 
scratch or file variable.  Use of this method on a RDBMS that uses cursors to maintain 
position on a table will lead to the database returning errors relating to non-existent or 
deleted cursors.  Consequently this should only be used for Oracle. 
 
The use of explicit commits suffers from the same problem as use of the iteration counter, 
with the exception that it is possible to code your way round it.  When an explicit commit 
is issued all data currently in the rollback segment will be committed to the database and 
any associated cursors will be released.  This action of releasing the cursors leads to 
problems with databases other than Oracle because when the driving file for the update is 
next read the cursor will no longer be available, so an error message will be issued by the 
database indicating that the cursor is no longer available.  This problem does not occur 
with Oracle because we use OCI (Oracle Call Interface) to access tables and the 
individual rows are read using the ROWID.  To overcome the problem of losing the 
cursors you should exit the PROIV function, linking back to the same function and 
positioning such that it carries on where it left off.  The easiest way of continuing an 
update after exiting is to have the function driven by a trigger file, where the records are 
deleted as they are processed.   
 
It is possible to enable an environment setting to generate an error if a commit is executed 
in the wrong place.  The setting, which should be in the environment stanza of the 
pro4.ini file, is as follows: 
 
 SQL_TRANSACTION_ERROR=Y

 
This will generate PROIV error message 356 if a commit is issued in an incorrect 
location.  This error message will be output if the iteration counter or explicit commit is 
used with Oracle within a transaction, even though the transaction could have completed 
successfully due to the use of ROWID and OCI. 



Converting a PROIV Application from Pro-ISAM to an RDBMS 14
 

N.b. the use of explicit commits can lead to unexpected results if they are issued at 
points within the file access part of the PROIV timing cycle.  For example, if you 
were to issue an explicit commit in the after read no error logic of an RDBMS table 
the read lock will be released, allowing another session to commit its pending 
changes.  When the first session now performs the update part of the PROIV cycle 
the updates will be based on the data read prior to the update by the other session.  
Consequently the data written to that table by the second session will be lost. 
 
The use of the iteration counter with Oracle or explicit commits between file 
accesses can also cause problems if another process is updating rows within the 
group of rows selected.  For example, consider the following:  a PROIV update 
function is used to process records in an RDBMS auto sequenced file with either an 
iteration counter set at 5 or a logic in after write no error that issues an explicit 
commit after every 5 records written.  At the same time that this PROIV function 
was started another process was started that deletes sequence numbers 16 to 19.  
Initially this second process is locked out by the first one, however when the commit 
is executed after writing 5 records the second process will be able to delete the 
records.  The first process will then continue until it gets to sequence number 16, at 
which point no more records will be processed, due to the way that auto sequenced 
files are handled. 

 

 



Converting a PROIV Application from Pro-ISAM to an RDBMS 15
 

 

Staged conversion route 

This is the recommended route for conversion of an application in a live environment 
where time constraints preclude the use of the ideal conversion route.  The intention of 
this route is to quickly achieve a workable system using an RDBMS and to then 
gradually apply more of the RDBMS specific modifications. 
 
This section will describe 3 stages that can be used to gradually produce a system that is 
well tuned to the database.  In order to reap all the benefits of moving to an RDBMS all 
stages described here should be completed.  Completion of the first stage of the 
conversion will allow an application to be deployed using an RDBMS in a very short 
time. 
 

Stage 1 
Stage 1 will get an existing application up and running using an RDBMS in the shortest 
possible time. 
 
The first step to the staged conversion process is converting your file definitions to have 
the external record format.  To do this set the EXTERNAL RECORD FORMAT flag to 
Y and the FILE TYPE to the appropriate value for your chosen database.  The external 
type and storage format also needs to be set on each field within the file.  It may also be 
necessary to specify alternate field names if the field name used in the PROIV file 
definition is a reserved name in the chosen RDBMS, or does not conform to the naming 
standards of the RDBMS.  For example, in SQL Server the word ‘KEY’ is a reserved 
name.  If you had a field name in the PROIV file definition called this you should add an 
alternative name field, accessible in the native development environment using the 
expand key.  For further information on this subject see the appropriate section of the 
ENVIRONMENT GUIDE for your chosen database. 
 
Next you should locate any places where commonly used records are locked for an 
extended period of time.  Where these are found the accessing of the record needs to be 
moved as close as possible to the end of the transaction.  As an alternative it may be 
worth considering leaving the file as a Pro-ISAM file, though this will not then be rolled 
back if the transaction fails.   Paging screen cycles where the primary file is in change or 
both mode can cause records to be locked until the transaction is committed.  A second 
access of the file should be inserted in look up mode as the primary file to prevent 
records that have not been changed being locked unnecessarily. 
 



Converting a PROIV Application from Pro-ISAM to an RDBMS 16
 

An alternative method that can be employed for odometer type files with Oracle is to use 
a sequence.  Sequences are Oracle objects that can be used to generate unique 
consecutive numbers and are not affected by transaction processing.  To create a new 
sequence use SQLPLUS and type a command similar to the following: 
 
 create sequence sequence_name increment by x start with y

Typically x would be 1 (one) and y would be 0 (zero). 
 
If you then put the following code in the before read of a dummy file definition created to 
receive the results the sequence will be incremented and returned. 
  

SQL
SELECT sequence_name.nextval FROM DUAL

ENDSQL 
 
Similar techniques to update odometer files outside of the main transaction may exist 
with other RDBMS.  It is up to the user to determine if a suitable method is available for 
their chosen RDBMS.  Use of database specific features will make it more difficult to 
switch from one RDBMS to another at a later stage. 
 

Stage 2 
Stage 2 will take the system that is now running using an RDBMS and implement various 
changes to improve performance. 
 
The first step of the second stage is to remove the unnecessary maintenance of cross-
reference files.  The cross-reference file definitions themselves should be retained and the 
alternate name set the file that they are cross-referencing.  If the cross-reference file 
contains just the key information and is used as the primary file in a cycle, with the main 
file then accessed to obtain the information to be processed, the cross-reference file 
definition will need to be changed to include the appropriate fields and the second file 
access removed.  This could be a very time consuming process to analyse and implement. 
 
Next you should look for cycles that have sort/select logics that deselect records or 
conditional deselects in the after read logic of the primary file of a cycle.  These should 
be removed and the default logic of the cycle changed to use full function SQL with 
additional WHERE clauses to remove the unwanted records from the returned set. 
 
The final step to this stage is to look for any cycles that can be replaced with single SQL 
statements.  A typical example of this is an update that selects a group of records and then 
modifies one or more fields, e.g. select all employees for a company that have been 
employed for 3 years and increase their holiday entitlement by one day.  For a non-
RDBMS this would be achieved by using a SEL-ONLY on the company and then 
DSELing any employee that has been employed for less than 3 years or more than 4 
years.  The holiday entitlement for the remaining records can then be incremented.  To 
achieve the same result in an RDBMS a single SQL statement could be used.  The 



Converting a PROIV Application from Pro-ISAM to an RDBMS 17
 

following example statement assumes that start-date is held using the PROIV internal 
date format and ignores leap years: 
 

#DATE = @DATE
SQL

UPDATE employee SET holiday = holiday + 1 WHERE company = '005' and
start-date - :#DATE BETWEEN 1095 AND 1460

ENDSQL 
 
Another example of a logical update that can be replaced with a single SQL statement is 
the kind that is used to count, or total up the value of one or more fields on, a group of 
records.  To achieve this using SQL a dummy PROIV file definition is required to contain 
the results of the SQL statement.  This file should then be specified as a secondary file in 
a cycle and the before read logic for the file should contain the SQL statement, e.g.  
 

SELECT COUNT(*) FROM INVLINE WHERE INVNO = :$INV_NO

or  
SELECT SUM(TRANSACT-AMOUNT), SUM(DISCOUNT-AMOUNT) FROM INVLINE WHERE INVNO =
:$INV_NO

 
The results of the SQL are accessible in the function using the fields from the PROIV file 
definition, which must match the result column definition of the SQL statement in terms 
of type and must also be large enough to contain the results.  The file definition must be 
defined as an external with the file type set to the appropriate RDBMS type, however the 
file should not be created in the database. 
 

Stage 3 
This final stage is make sure that the transaction boundaries are correctly set to maintain 
data integrity in the event of a problem with the update of the data.  Depending on the 
design and complexity of the application the analysis of transactions could be a very time 
consuming process.  In order to disable the default commit behaviour of PROIV the value 
variable &#@SUPP-COMM needs to be enabled at the start of the transaction and 
disabled at the end. 
 
If the maintenance of data integrity is of prime concern or a motivating factor in moving 
to an RDBMS then this stage could be combined with the implementation of stages 1 or 
2. 



Converting a PROIV Application from Pro-ISAM to an RDBMS 18
 

Advanced techniques 

This section will give additional information that may help to tune your application more 
to your requirements.  The settings described below can either be set in the 
[ENVIRONMENT] stanza of the pro4.ini file or set as environment settings using the 
appropriate technique for the platform, unless otherwise specified. 
 

TP_ROLLBACK=Y 
Use of this setting causes certain PROIV error messages to perform a rollback on the 
database.  The following error messages will generate a rollback on the database by 
default when this setting is enabled: 

 
3 – 6, 11, 13 – 15, 17 – 19, 24, 29, 35 – 40, 48 – 50, 54, 124, 140, 157, 161 – 162, 
172, 176, 191, 210, 300, 360 – 375, 377 – 399, 660 – 661, 663 – 669, 712, 722 – 
725, 899 

 
It is possible to override the messages that will cause the rollback behaviour to be 
performed by adding an additional stanza to the pro4.ini as follows: 
 
 [ROLLBACKMESSAGE] 
 NO=3-4,24 
 YES=28,356 
 
These lines cause message 3 to 4 and 24 (security violation, security level violation and 
division by zero) to no longer cause a rollback and for messages 28 and 356 (exponent 
out of range and transaction integrity error) to now cause a rollback.  Note that individual 
message numbers are separated by commas and ranges of message numbers are included 
or excluded by separating the start and end message numbers by a hyphen (-) without any 
spaces.  At present (PROIV version 5.0r109) this facility only works on Windows 
platforms. 
 

SQL_TRANSACTION_ERROR=Y 
This will generate PROIV error message 356 (SQL ERROR: APPLICATION 
TRANSACTION INTEGRITY ERROR) if a commit is issued in an incorrect location.  
This error message will be output if the iteration counter or explicit commit is used with 
Oracle within a transaction, even though the transaction could have completed 
successfully due to the use of ROWID and OCI. 
 



Converting a PROIV Application from Pro-ISAM to an RDBMS 19
 

SQL_CURSORS=<num> 
This setting defines the number of cursors that PROIV will use.  By default, if not 
specified, this value will be set to 128.  If the number specified on this setting is greater 
than the value specified in the database configuration the database will return an out of 
cursor error, e.g. ORA-01000 from Oracle (default installation value for Oracle is 50 and 
for PROIV is 128). 
 
PROIV uses one cursor for a file in look up mode.  If the file is in add, change, both or 
delete mode then two cursors will be used for the file access.   If the value for 
SQL_CURSORS is lower than the number of cursors required for a transaction to 
complete PROIV error 361 will be output.  If you increase the value of SQL_CURSORS 
then each PROIV user will use more memory on the PROIV kernel system.   Having a 
value of SQL_CURSORS that is very high can also adversely affect the performance of 
processing database commands. 
 
Ideally, the value of SQL_CURSORS should be set to the lowest value required to allow 
the most complex transaction to complete.  However, this can be an extremely difficult 
thing to determine.  Different users can be set up with different values for 
SQL_CURSORS by either using different script files or, on Windows platforms, using 
different user ini files. 
 
The new SQL layer, as provided in kernels from 5.5r210 onwards, includes a new setting.  
The value, AUTO, allows the kernel to dynamically increase the number of cursors 
available for use by the SQL layer.  There is a slight performance degradation when using 
this option.  However, this option can be useful for determining, in conjunction with 
tracing, the maximum number of cursors used by the application. 
 
 

SQL_NOSIG=Y 
This setting should be used on Windows platforms if problems are experienced with the 
connection.  The problem is caused by an error with the Windows TCP/IP protocol stack, 
which only allows one blocking operation to be in effect at a time.  When the PROIV 
kernel issues its signal check to see if the database server is still processing the request it 
causes the connection between the database and the operating system to be interrupted 
because of the bug in the operating system. 
 
Enabling this setting will prevent the waiting for database response message from 
appearing on the bottom line of the client.  It will also stop the PROIV kernel from 
processing any lock logics. 
 

CONNECTION=<user/password/dsn> 
This setting, which appears in the [DATABASE] stanza of the pro4.ini file, specifies the 
connection details used for the database.  There are three values that can be specified for 



Converting a PROIV Application from Pro-ISAM to an RDBMS 20
 

the setting.  The first two parameters are the user name and password for the database.  
The third parameter is used for connection through ODBC and is used to determine 
which system DSN (Data Source Name) is used.  The old method of specifying the DSN 
using the SQL_DBNAME setting in the environment stanza is still supported. 
 
For a connection to Oracle the password can have a SQLNet name appended, separated 
by a @ sign.  Some systems require that the string containing the @ sign be enclosed in 
quotes.  For example, CONNECTION=”system/manager@wheels”. 
 

OS Authentication  
In the normal method of setting up the database connection the database user name and 
password are entered in plain text into the pro4.ini file, the user specific ini file or the 
script used to start the kernel.  It is possible to configure most database engines to accept 
connections using the Operating System authentication, which removes the need to hold 
the log on information in plain text. 
 
To set this up for Oracle you will need to complete the following steps: 

1. Set up, or determine the current value of, the OS_AUTHENT_PREFIX value 
within Oracle.  By default this value is set to OPS$.   

2. The next step is to create the appropriate user profiles within the database using 
the OS_AUTHENT_PREFIX value, e.g. OPS$user1.  The password for these 
users must be set to IDENTIFIED EXTERNALLY.   

3. The PROIV file definitions may need to be changed such that the alternate file 
name includes the table owner, e.g. DBA.TABLENAME. 

4. Finally, the user name and password settings used by PROIV need to be changed 
to be null, e.g. CONNECTION=/ in the database section of the pro4.ini file, or 
export SQL_USERNAME= and export SQL_PASSWORD=. 

 

PRODB_CHARSET=<value> 
This setting, which appears in the [DATABASE] stanzas of the pro4.ini file, determines 
which character will be used to specify the upper limit when PROIV creates the WHERE 
clause of the SQL statements.  The valid values are A, a, Z, z, 0 and 9.  For support of 
legacy settings the values of 7 and 8 (default value) are also supported.  The value of 7 is 
mapped to z.  Typically, if the wrong value for PRODB_CHARSET is used, a SEL-
RANGE or SEL-PARTIAL will stop when the key value read from the database reaches 
W or Y if an ASCII (American Standard Code for Information Interchange) collating 
sequence is used. 
 
Providing the correct collating sequence is used on the database then either the default 
value or z will result in the correct rows being returned from the table for ASCII 
encoding.  For the EBCDIC (Extended Binary Coded Decimal Interchange Code) 
encoding the value of 9 should be used if numbers are to be included, otherwise Z should 
be used. 
 



Converting a PROIV Application from Pro-ISAM to an RDBMS 21
 

LOCKED_ROWS_RETURNED=Y 
This setting should only be used with Oracle and is used in the [DATABASE] stanza of 
the pro4.ini file.  When this is set the message that is displayed when a record lock is 
encountered will be changed to indicate which file is being locked.  Additionally this will 
allow the record lock logic to be processed for Oracle.  
 

ORACLE_DLLNAME=<dll name> 
This setting should be used on Windows platforms when connecting to an Oracle 
database.  The DLL name should be the fully qualified name, i.e. including the drive and 
path name, of the DLL supplied with the PROIV installation.  The DLL will have a name 
similar to PROORA815.DLL and will be installed into the same directory as the PROIV 
kernel.  The DLL supplied with PROIV 5.0r104 and subsequent kernels is compatible 
with the Oracle 9.0.1 Windows client. 
 

REPARSE=Y 
This setting should be used if full function dynamic SQL is used in the PROIV logic.  If 
you do not use dynamic SQL you should not use this setting, unless requested to by 
PROIV support personnel.  This option is deprecated in 5.5r209. 
 

Savepoint 
If you need the ability to rollback a partial transaction to a known point then you can use 
the SAVEPOINT command of SQL.  Savepoint is a SQL feature that may not be 
supported in your chosen RDBMS.  To activate a savepoint use the following logic lines: 
 

#X = SYS-SQL(‘SAVEPOINT <savepoint name>’)

 
To roll back to the savepoint use the following logic lines: 
 

#X = SYS-SQL(‘ROLLBACK TO SAVEPOINT <savepoint name>’) 
 
A typical use of this command would be for use with order entry.  The customer details 
entry would be written as one function, where the PROIV commit processing is turned off 
in the entry logic.  After entering the customer details the function would exit and then 
link to another function to allow entry of the order details.  In the entry logic of the order 
details function the savepoint would be set.  The user could then enter the order lines.  
Two buttons could be provided one to accept the order, the other button would allow the 
order to be cancelled, retaining the customer details, by using the rollback to savepoint.  
A third button could also be provided that performs a normal rollback, thus removing the 
customer details as well. 
 



Converting a PROIV Application from Pro-ISAM to an RDBMS 22
 

 &#@SQL-SORT 
This system value variable when enabled causes the default PRO-ISAM type sort to be 
replaced with an ORDER BY clause, which is appended to the end of the Type 1 Full 
Function or Transparency Mode SQL statement.  Without this statement, which must be 
the first logic command in a sort-select logic, PROIV will select all the records for the 
cycle using the appropriate table index for the key sequence defined in the primary file of 
the cycle and then process the sort in the normal way.  By enabling this option the 
database engine can determine the best index to use to retrieve the rows from the table in 
the required sequence. 
 
The ENABLE(&#@SQL-SORT) command only takes effect if all files up to the sort-
select end file are RDBMS tables and all secondary files included in the sort can be 
accessed using column names from tables higher up the list of files.  This means that if 
any Before Sort Read logics are used in the cycle this option will have no effect.  
Additionally, this option will be ignored if any of the sort fields specified are scratch 
variables. 
 
The ORDER BY clause of a SQL statement is used by most RDBMS to decide which 
index is used to access the data.  If the RDBMS is unable to use an index for the table due  
to the ORDER BY clause generated by the sort field(s) then the RDBMS access could 
take a considerable amount of time on a table that contains large volumes of data.  
Creating the correct indexes on a database can significantly improve performance.  
Conversely, creating too many, or the wrong ones, can degrade performance. 
 
The new SQL layer will, by default, enable this option.  The option can be disabled if any 
of the conditions described above are not met. 
 

Full function SQL 
There are two types of full function SQL that are supported by the PROIV version 4.0 
and 5.0 SQL engines, plus Transparency Mode.  Full function SQL is enabled by using 
the SQL…ENDSQL command pair in the default logic of a cycle with a SELECT 
statement between them.  If full function is not enabled PROIV will generate its own 
SELECT statements – this is known as Transparency Mode.  In addition to these three 
modes the user can also use non-SELECT statements in logic. 
 

Type 1 
Type 1 SQL is a format similar to that generated by PROIV in transparency mode.  The 
PROIV kernel generates the list of columns to be selected from the table specified in the 
SELECT statement.  The list is generated by referring to the fields specified in the 
PROIV file definition and will only include those used within the function.  This PROIV 
file definition need not include all the columns defined on the table and need not have the 
fields defined in the same sequence as the columns.  If a field on the file definition has an 



Converting a PROIV Application from Pro-ISAM to an RDBMS 23
 

alternate field name specified this will be used in the SELECT statement instead of the 
field name used within the PROIV function. 
 
The file specified in the select statement is the PROIV file name.  If an alternate file name 
is specified on the PROIV file definition this will be passed to the database, otherwise the 
PROIV file name will be used.  
 
The general form of type 1 SQL is as follows: 

SELECT 
FROM <PROIV file name> 
[WHERE] 
[ORDER BY] 
 

N.b. the use of SELECT * FROM <PROIV file name> in full function SQL is now 
handled as type 1 SQL.  In versions prior to 4.6 this would be treated as type 2 SQL and 
would return all columns from the table instead of just those used in the function.  
However, the use of an * qualified by a table name or table name alias does still result in 
type 2 SQL statement processing, i.e. SELECT CUSTOMER.* FROM CUSTOMER is 
type 2 SQL, whereas SELECT * FROM CUSTOMER is type 1.  In type 2 processing the 
* will return all columns from the table in the order that they are defined on the database. 
 

 

Type 2 
Type 2 SQL is passed to the database as coded with only minor changes being made by 
the PROIV database engine.  The general form of a type 2 statement is as follows: 
 

SELECT [column list/SQL function] 
FROM <table name> 
[WHERE] 
[ORDER BY] 
[GROUP BY] 
[HAVING] 

 
The name specified on the FROM clause must be the table name and is only associated 
with a PROIV file definition by its location in the PROIV processing cycle.  The columns 
specified in the SELECT statement must be compatible with the fields specified in the 
PROIV file definition that will receive the results.  SQL functions include MAX, MIN, 
AVG and COUNT. 
 
N.b. the use of an * qualified by a table name or table name alias results in type 2 SQL 
statement processing, i.e. SELECT CUSTOMER.* FROM CUSTOMER is type 2 SQL, 
whereas SELECT * FROM CUSTOMER is type 1.  In type 2 processing the * will return 
all columns from the table in the order that they are defined on the database. 
 



Converting a PROIV Application from Pro-ISAM to an RDBMS 24
 

There is no mechanism for a type 2 SQL statement to access a table via a logical database 
entry defined in the pro4.ini file.  If you need to access a table that exists in a logical 
database using type 2 SQL you must make sure that a route to the table exists via the 
database defined in the default database connection.  The performance and transaction 
handling of a table accessed by this method may not match that experienced had the table 
been accessed directly through the logical database route. 
 

Non-SELECT statements 
The three modes just described are all processed by PROIV within the file access part of 
the PROIV timing cycle.  Non-SELECT statements are processed in logic at the point that 
they are encountered.  Non-SELECT statements do not return data, merely a return code.  
The statement is defined by either enclosing it in the SQL…ENDSQL pair, as with full 
function SQL, or by specifying the statement in the SYS-SQL logic command. 
 
Transaction processing, cursor manipulation and database connect statements are not 
allowed to be specified in SQL statements within PROIV logic.  The PROIV database 
engine handles these functions.  It is also not possible to create new tables or alter 
existing table definitions from within a PROIV session. 
 

Dynamic SQL 
The dynamic SQL available in PROIV from version 5.0r104 allows construction of the 
WHERE clause of an SQL statement at execution time.  This is particularly useful for 
complex search screens where optional search criteria can be selected from within the 
application.  Without the use of dynamic SQL this functionality is extremely difficult to 
implement.  Use of dynamic SQL in PROIV requires that REPARSE=Y is implemented 
in the pro4.ini file or set as an environment variable in kernels prior to 5.5r209. 
 
The standard, non-dynamic, full function SQL allows binding of variables to the WHERE 
clause of the SQL.  This binding is done at runtime, meaning that the SQL itself is static.  
The database engine creates an execution plan when the SQL is sent to the database the 
first time.  Each time the SQL is executed the same execution plan is used but different 
variable values are used.  When a PROIV function that contains non-dynamic SQL is 
compiled the SQL is converted into a form acceptable to the database that can have 
variables bound in.  For example 
  

SELECT COUNT(*) FROM ACCT_TABLE WHERE ACCT_CODE BETWEEN :$LOW AND :$HIGH

becomes 
SELECT COUNT(*) FROM ACCT_TABLE WHERE ACCT_CODE BETWEEN ? AND ?

and the PROIV system provides pointers to the :$LOW and :$HIGH data at runtime. 
 
With non-dynamic SQL there is no way to alter the SQL itself, only the bound variables 
can change.  When building a search screen each possible form would need to be listed in 
a CASE statement.  For simple cases it is possible to write out all the alternative SQL 
statements, however if you had ten independent selection criteria it would be infeasible to 



Converting a PROIV Application from Pro-ISAM to an RDBMS 25
 

list all 1024 possible alternatives.  With the new dynamic SQL you can build up the 
selection criteria in a scratch variable and then specify this on the WHERE clause of the 
SQL statement.   
 
Dynamic SQL does not bind the variables at run time and, consequently, each time the 
SQL is sent to the database a new execution plan will have to be created.  The WHERE 
clause is built up in logic and then used in the SQL statement, for example: 
 

$$SEL = “DO_CUSTOMER_CODE LIKE ‘B%’”
IF $STATUS # ‘’

$$SEL = $$SEL + ‘ AND DO_CUS_STATUS_COD = ‘ + $STATUS
ENDIF
IF #CRED_LOW > 0

IF #CRED_HIGH > 0
$$SEL = $$SEL + ‘ AND DO_CUS_CREDIT_LIMIT BETWEEN ‘ + CONV(#CRED_LOW) +

‘ AND ‘ + CONV(#CRED_HIGH)
ELSE

$$SEL = $$SEL + ‘ AND DO_CUS_CREDIT_LIMIT >= ‘ + CONV(#CRED_LOW)
ELSE

IF #CRED_HIGH > 0
$$SEL = $$SEL + ‘ AND DO_CUS_CREDIT_LIMIT <= ‘ + CONV(#CREDIT_HIGH)

ENDIF
SQL

DYNAMIC SELECT FROM DO_CUST WHERE :$$SEL
ENDSQL 

 
Note that the quoted string (‘B%’) passed to the SQL on the first line has to be enclosed 
in single quotes therefore, for ease of reading, the whole string on this line has been 
enclosed in double quotes.  It is also possible using dynamic SQL to change the column 
used in the selection statement, e.g. 
 

CASE $TEST
WHEN ‘ACC’: $FIELD = “ACCT_CODE”
WHEN ‘NAM’: $FIELD = “ACCT_NAME”
WHEN ‘ADD’: $FIELD = “ACCT_ADDRESS_LINE_1”
OTHERWISE: LSEXIT

EXIT
ENDCASE
$CONDITION = " LIKE "
$VALUE = " 'AB%' "
SQL

DYNAMIC SELECT COUNT(*) FROM ACCT_TABLE WHERE :$FIELD :$CONDITION :$VALUE
ENDSQL

 
By changing the value of $FIELD in the CASE statement a different column will be used 
for the selection criterion.  Note that the strings in the assignment statements are 
surrounded by spaces, this is to ensure that the select statement passed to the database 
engine has spaces between the various components.  Conversely, you should not rely on 
the lack of spaces between the components to concatenate strings on the SELECT 
statement.  PROIV may insert a space before and after every string it expands prior to 
sending it to the database engine. 
 
If a numeric scratch variable is included in the WHERE clause of a dynamic SQL 
statement this will be treated the same way that a non-dynamic variable would be treated.  
That is, the variable will be bound to the SELECT statement at execution time, rather 
than being passed as a fixed value. 



Converting a PROIV Application from Pro-ISAM to an RDBMS 26
 

 
The generated SQL will be sent to the database exactly as supplied.  It is important that 
any user-supplied data that is inserted into the SQL is properly sanitized, otherwise it 
may be possible for a user to alter the SQL and potentially read or alter data to which 
they should not have access.  For example, consider the following code that should only 
allow the user to access "low security" accounts, furthermore assume that account "AB1" 
is a "high security" account: 
 

$SELECTION="ACCT_CODE = ‘" + $ACCT_NO + "’"
SQL

DYNAMIC SELECT FROM ACCT_TABLE WHERE SECURITY_LEVEL<2 AND :$SELECTION
ENDSQL 
 

If $ACCT_NO can be supplied by the user then they could supply the following value: 
AB1' OR ACCT_CODE='AB1

Note the unmatched single quotes ('). 
 
When this is expanded we end up with the following SQL: 
 

SELECT FROM ACCT_TABLE WHERE SECURITY_LEVEL<2 AND ACCT_CODE = 'AB1' OR
ACCT_CODE='AB1'

 
Because AND binds tighter than OR in SQL this will have the effect of avoiding the 
hard-coded SECURITY_LEVEL<2 condition. 
 

Logical databases 
The pro4.ini file allows multiple database connections to be defined.  Logical database 
definition allows the different sections of an application to connect to different databases, 
e.g. payroll to one database and the purchase ledger to another.  It is even possible to 
specify that the separate logical databases use different RDBMS.  Extreme caution should 
be used when multiple databases are used within a single transaction as this can lead to 
severe problems with data integrity should a problem occur during the commit phase. 
 
To set up logical databases you will need to have multiple [DATABASE] stanzas defined 
in the pro4.ini file.  The name specified in the stanza heading can then be used in the 
alternate file name within PROIV.  When coding the alternate name in your application it 
must be contained within % signs.  The logical database name can also be used within the 
ALIAS logic command.  The following example shows a section of a pro4.ini file with 
two logical databases defined, plus screen prints of two file definitions.  The first of these 
file definitions shows the use of a logical database name along with mapping to a 
different name in the database.  The second file definition shows the use of a logical 
database name without reassigning the name.  Notice that the names in the % signs match 
the names in the [DATABASE] stanza heading.  If the named stanza is not found in the 
pro4.ini then the error message ‘390 – SQL_DBTYPE EITHER NOT SET OR 
INVALID’ is displayed. 
 
[DATABASE - SQLDEFAULT] 
FILETYPE=SQLSERVE 



Converting a PROIV Application from Pro-ISAM to an RDBMS 27
 

CONNECTION=sa//default 
PRODB_CHARSET=z 
 
[DATABASE - WHEELS] 
FILETYPE=ORACLE 
CONNECTION=system/manager@database1 
PRODB_CHARSET=z 
 
[DATABASE - WHEELS2] 
FILETYPE=SQLSERVE 
CONNECTION=sa//database2 
PRODB_CHARSET=7 
 

 
 
 



Converting a PROIV Application from Pro-ISAM to an RDBMS 28
 

 
 
A logical database name can be used on the ALIAS logic command but the name to 
which the PROIV file is mapped must also include the table name to be accessed in the 
database, e.g. ALIAS(‘RGSQL01’, ‘%WHEELS2% RGSQL01’).  Failure to include the 
table name in the ALIAS logic command will lead to a malformed SQL statement. 
 

ALIAS logic command 
The only valid point at which the ALIAS logic command can always be used is in the 
‘logic in’ of the first function of a transaction.  Use of the ALIAS command when a file 
or RDBMS table is open can lead to unpredictable results.   
 
The ALIAS command can be used without problems on PRO-ISAM files at points that 
are not valid for RDBMS tables, if the programmer is aware of the way that the kernel 
opens and closes files.  This is feasible because the PROIV kernel will close a PRO-
ISAM file that is in look up mode if it runs out of file handles.  With an RDBMS all 
tables are held open until the transaction completes.  
 
It is possible to alias an RDBMS file to an alternative table or to a logical database using 
the ALIAS command.  A couple of examples of using ALIAS on RDBMS files follow. 
 
To map the file WRCUST to a table of the same name but in a different logical database: 

ALIAS(‘WRCUST’,’%BETTY%WRCUST’)

N.b. the following is not valid: 



Converting a PROIV Application from Pro-ISAM to an RDBMS 29
 

ALIAS(‘WRCUST’,’%BETTY%’)

 
To map a file from a logical database to the default database changing the table name 
accessed: 

ALIAS(‘WRCUST’,’%SQLDEFAULT%CUSTOMER’)

 

&#@SUPP-COMM 
This value variable should ideally be enabled in the logic in (On Function Entry event) of 
a function in order to disable the standard PROIV commit behaviour.  Suppressing the 
normal commit behaviour allows an RDBMS transaction to be split over multiple PROIV 
functions.   
 
When the value variable is disabled, such that the normal PROIV commits are again 
performed, a commit will not happen immediately.  The commit will instead be 
performed at the next normal automatic commit point.  See the section entitled 
‘Committable cycle’ for details of where this will occur.  To maintain control of the 
commit in this situation an explicit commit should be issued at the point that the PROIV 
automatic commit processing is switched on.  The ideal place to disable 
&#@SUPP-COMM is in the exit logic (On Function Exit event) of a function and to 
follow the command immediately with an explicit commit (e.g. #RC = COMMIT()). 
 
 

 
Note that if you log out of PROIV, or otherwise terminate your connection to the PROIV 
kernel, with &#@SUPP-COMM enabled that any uncommitted work will not be saved.  
With SQL Server this action will cause an ‘Invalid transaction state’ error, which will be 
reported as a SYSTEM E366 error by the kernel. 
 

Committable cycle 
With the standard PROIV commit behaviour, i.e. when it has not been switched off by 
issuing an ENABLE(&#@SUPP-COMM), every non-global function that has a file has 
at least one committable cycle.  The committable cycle is defined as being the outermost 
currently active cycle that has a file.  The file does not have to be an RDBMS file.  A 
global function will only have a committable cycle if the calling function has not 
accessed a file and the automatic commit behaviour has not been disabled.  Only one 
committable cycle can exist at any time. 
 

N.b. You should not use the database transaction executive COMMIT in either the 
SQL…ENDSQL pair or the SYS-SQL logic command, as the PROIV kernel has no 
knowledge of the state of the database after executing this command.  By using the 
PROIV logic command the kernel is aware that cursor positioning has been lost and 
can re-open the database cursors. 



Converting a PROIV Application from Pro-ISAM to an RDBMS 30
 

Reports and updates 
When the committable cycle in a report or update type function is exited a commit is 
issued to the connected database(s).  An LSUPDATE cycle within a screen type function 
will also issue a commit on exit if it is the current committable cycle. 
 

Screens 
‘Flat’ cycles will issue a commit to the database after each primary file, and its associated 
secondary files, has completed its write phase.  Paging cycles will be committed when a 
page of records has been processed.  This will occur when the page up, page down or 
EOD key is pressed.  A delete or insert of a group of records in a paging cycle is regarded 
as a single transaction and a commit will be issued when the delete or insert is completed. 
 

SQL optimization 
In order to improve performance when executing SQL statements in PROIV there are 
several rules that can be followed. 
 

From clause 
Where more that one table is reference in a SELECT statement the table names in the 
FROM clause should be ordered such that the table that will return the fewest rows is 
specified first.  Subsequent tables referenced should be organized in ascending sequence 
of expected number of returned rows. 
 

Where clause 
The tests in the where clause should be performed in the following sequence for 
maximum efficiency 

1. Comparisons with scratch variables 
2. Comparisons with variables from other tables 
3. Table joins to be included in the output 

 

Indexes 
Where a specific sequence of accessing rows in a table is used regularly an index should 
be created on the table to improve access efficiency.  However, the number of indexes on 
a table should be kept to a minimum because there is an overhead when maintaining the 
data on a table for each index.  Most databases come with a tool for analyzing which 
indexes are required for the most efficient access of the data.  
 



Converting a PROIV Application from Pro-ISAM to an RDBMS 31
 

Multiple PROIV file definitions 
In some circumstances it is worth defining multiple file definitions for the same RDBMS 
table.  The reason for doing this is to reduce the size of the SQL statement sent to the 
database and the amount of data that needs to be deblocked by the PROIV kernel. 
 
An example of where this would be appropriate is if you had a table with 100 columns 
that needed to be accessed in a PROIV application but you also needed to periodically 
update a column that was near the end of the table.  In this circumstance you would have 
one file definition that had fields for each column and another one that contained only the 
key fields plus the field that needed to be updated.  Because PROIV uses the external 
field name to construct the SQL statements individual columns can be addressed directly 
without retrieving what would be intervening fields on a flat filing system, such PRO-
ISAM or C-ISAM. 

Things to avoid 
Wherever possible you should avoid using BETWEEN, IN, EXISTS and nested SELECT 
statements that reference variables from an outer SELECT statement.   
 
Do not use variables that are retrieved from any file used in the cycle in the WHERE 
clause.  If you do, the results returned might not be what is expected.  Instead you should 
assign the file variable to a scratch variable and use that in its place in the SELECT 
statement. 
 
Do not use LIKE, SOUNDEX or comparison operators (e.g. >, < or =) on the key fields 
in a full function SQL statement in the default logic of an LS (cycle).  If you do use any 
of these the database engine may not be able to use any indexes built on the table. 
 

Kernel response waiting message 
With the introduction of MFC GUI client version 326 a new method of indicating that the 
client is waiting on a response from the kernel was introduced.  Reasons that the client is 
waiting on a response from the kernel include:  database record lock, awaiting completion 
of long SQL statement and a communication problem between client and kernel. 
 
To implement the new method of reporting the wait state in the client, the following 
changes have to be made: 
 
On the PROIV server either export or include in the [ENVIRONMENT] stanza of the 
pro4.ini file the following line: 
SQL_NOSIG=Y 
 
On each client PC insert the following line in the proiv.ini file in the [Settings] stanza: 
KernelWaitTimeout=<number of seconds> 
KernelWaitHourGlass=<0 or 1> 
 



Converting a PROIV Application from Pro-ISAM to an RDBMS 32
 

The message out put is display on the bottom line of the client, overwriting any user or 
system message that may have been displayed.  When the kernel responds the message 
line will be cleared.   If the value of KernelWaitTimeout is set too low then the message 
will appear during normal processing.  Setting KernelWaitHourGlass to 1 causes the 
‘Normal Select’ mouse pointer to change to the ‘Busy’ pointer when the timeout is 
reached. 
 

ODBCCMPT 
If you connect to SQL Server from PROIV and you have installed the SQL Server 2000 
client onto the PROIV kernel system running a Windows server version you should run a 
utility provided with the SQL Server client installation.  The command to run is: 
 

ODBCCMPT pro32srv /v:7

 
Before running this command you should stop the PROIV service from the service 
manager and then restart it afterwards. 
 
This command puts the SQL Server ODBC driver into SQL Server 7 compatibility mode.  
The PROIV Windows kernel is compiled using SQL Server 7 libraries in order to provide 
backwards support for customers still using SQL Server 7. 
 
This command must be run for kernel up to, but not including 5.5r210.  If you have run 
this command previously then you must disable it when upgrading to 5.5r210 or higher.  
To disable ODBCCMPT version 7 compatibility you must type the following command: 
 
 ODBCCMPT pro32srv /v:7 /d

 
The reason that this is no longer required is that the new SQL layer now uses ODBC 
version3.0 commands. 
 
 


	Potential Issues
	Benefits of an RDBMS
	Data analysis
	Top down analysis
	Bottom up analysis

	Re-engineer application
	Remove cross reference files
	Remove long locks
	Replace simple updates
	Replace sort select logics
	Analyse transactions

	Stage 1
	Stage 2
	Stage 3
	TP_ROLLBACK=Y
	SQL_TRANSACTION_ERROR=Y
	SQL_CURSORS=<num>
	SQL_NOSIG=Y
	CONNECTION=<user/password/dsn>
	OS Authentication
	PRODB_CHARSET=<value>
	LOCKED_ROWS_RETURNED=Y
	ORACLE_DLLNAME=<dll name>
	REPARSE=Y
	Savepoint
	&#@SQL-SORT
	Full function SQL
	Type 1
	Type 2
	Non-SELECT statements

	Dynamic SQL
	Logical databases
	ALIAS logic command
	&#@SUPP-COMM
	Committable cycle
	Reports and updates
	Screens

	SQL optimization
	From clause
	Where clause
	Indexes
	Multiple PROIV file definitions
	Things to avoid

	Kernel response waiting message
	ODBCCMPT

