
Relational Database Overview

__

Relational Database
Overview

Copyright PROIV Technology Inc - 1 -

Relational Database Overview

__
Copyright PROIV Technology Inc - 2 -

Relational Database Overview

When moving an application to an RDBMS file system, you are likely to experience
some of the following issues:

• Increase in system requirements. The database management system will inevitably

require more memory, disk space and processor clock cycles.

• Application conversion. You will need to make some changes made to your

application. Although many of these tasks can be automated, a full system test with
performance tests will be required.

• Locking problems. The transaction/locking structure in RDBMS is different to that of

an ISAM system, it is likely that some of your current functions will have
concurrency problems.

• Training. To get the most from your system, your designers and programmers will

need some SQL and database administration skills.

So, considering these issues, why would you move to a relational database?

• Data Integrity. Using a relational database, you can define a unit of work as a

transaction. If this transaction does not complete, all updates belonging to that
transaction will be ‘rolled back’. With ISAM storage systems, you inevitably write
code that processes workfiles to ensure that updates only occur at the end of a
transaction. This code will no longer be necessary.

__
Copyright PROIV Technology Inc - 3 -

Relational Database Overview

• Enabling ‘3 tier’ architecture. The 3 ‘tiers’ are Business rules, Presentation and
Database. The marketplace is moving towards the 3-tier model, where any tier can
easily be changed without affecting another. Pro-iv is your business rules tier. For the
presentation tier, you can already choose between green screen, windows GUI and
web browser. After a move to RDBMS, you will be able to easily move your
application between databases further expanding your potential client base.

• Reducing application size and complexity. When you use RDBMS, your

application should actually reduce in size and become more manageable.
Functionality that processed workfiles and index files can be removed.

• Best of breed. You are already using Pro-iv, which gives your clients the ability run

on their favorite platform and to be able to choose the client interface. Using a
relational database gives you access to many tools that link directly to your database.
Take reporting tools. Pro-iv reports are very basic. To supply tailorable management
reports really requires a business intelligence tool. If you are using a popular
database, it is very easy to add business intelligence capabilities to your product
offerings. As well as being a sales opportunity, it is a good chance to pick up more
back-end consultancy work.

__
Copyright PROIV Technology Inc - 4 -

Relational Database Overview

__

Copyright PROIV Technology Inc - 5 -

Relational Database Overview

• Native Interface. When Pro-iv interfaces to a database, it does so directly, ODBC is

not used! Performance of the interface is not a problem.

• Uses cursors. The cursor is an area of memory in which an SQL statement and its

execution parameters are stored. Pro-iv uses the programmatic interfaces to control
the cursors. This gives Pro-iv control over the phases of the SQL statement execution.

• Reduce the buffer to improve performance! If you look at the above diagram, you

can see how SQL commands are handled using the Pro-iv/ORACLE interface. An
SQL command is issued which is handled by ORACLE. ORACLE will interrogate
the database and pass the results back to Pro-iv. These results are then processed by
the standard Pro-iv timing cycle.
Let’s consider a paging update. An SQL or SEL- command would be issued. This
would then be processed by ORACLE and the results passed back to Pro-iv. All of
this happens just after execution of the default logic. These results would then be
processed by sort select logic and after that, each row would be read. In sort select
and after read no error; rows can still be de-selected. Your goal when embedding
SQL into Pro-iv functions is to reduce the size of the results passed back from
ORACLE to Pro-iv. There is no point in passing a row to Pro-iv to merely delete it!
(More on this later).

__
Copyright PROIV Technology Inc - 6 -

Relational Database Overview

• Two types – manual & auto commit. There are 2 ways that transactions can be

defined within Pro-iv. You can use manual commit and automatic commit. Manual
commit leaves the definition of the transaction boundaries entirely up to the
programmer. Automatic commit uses a set of pre-defined rules to decide where the
transaction boundary will be.

• COMMIT command The COMMIT command is used to commit the current

transaction within a function. The COMMIT command can be used in both manual
and auto commit modes.

• Set commit rules at the start of EVERY transaction. It is not mandatory to set the

type of commit at the start of every function. It is, however very good practice to do
so. Some organizations have a global logic for auto commit and a global logic for
manual commit. One of these global logics should appear at the start of every
transaction. If you do not set the type of transaction, then Pro-iv will keep the last
setting used. This will cause application execution problems.

• Commit every 500 rows. There’s a lot of processing involved when ORACLE

performs a commit. You can issue a commit after each row is updated but this would
be extremely slow. On the other hand, if you do not commit often enough, you could
cause a rollback (depending on the size of your transaction log files). As a general
recommendation, a commit should be issued after 500 rows have been changed. In
any case, the commit should only be issued at a sensible point in the application.
Another important issue is that row locks are not released until a commit is issued.

__
Copyright PROIV Technology Inc - 7 -

Relational Database Overview

Let’s take a look at how you use transaction processing in Pro-iv, firstly manual commit.
For manual commit, the auto commit facility in Pro-iv must be turned OFF.

• Allows for multi-function transactions. When you use automatic commit, Pro-iv

assumes that your transaction is enclosed within one function. This is not always the
case. In the above example, the transaction is spread across 3 functions. This allows
you to write a system with small modular functions, and still benefit from transaction
processing.

• Use the COMMIT command. When you use manual commit, it is vital to use the

COMMIT command. In the above example the commit command would be issued at
the end of Function C. If you do not issue a commit, then the rows updates may get
committed in another function. All row locks would be held until that commit took
place. If a commit is not issued and the user logs off Pro-iv, then ALL outstanding
updates would be rolled back.
The commit command should never be put between the read and write cycles. If this
is done, a ‘Fetch out of sequence’ error will occur as Pro-iv tries to write back to a
cursor that no longer exists (commit clears the cursors). A commit can be done in
after write no error of the last table in update mode in a characteristic. It can also be
done in exit logic of the characteristic or function. Be careful when you put the
commit command anywhere else!

__
Copyright PROIV Technology Inc - 8 -

Relational Database Overview

When using automatic commit, it is vital that you understand where Pro-iv will issue a
commit.

• Commitable LS concept. With the relational database interface to Pro-iv, we have

introduced the concept of the ‘commitable LS’. The commitable LS is the
characteristic in which a commit will be issued. There can be only ONE commitable
LS at any time. The commitable LS is the highest characteristic with a table being
modified. There can be more than one commitable LS in a function but only one can
be commitable at any time. The issuing of a commit is dependent on the type of
characteristic.

• Screens commit every iteration of the commitable LS. If a ‘flat’ screen is currently

the commitable LS, then a commit will be issued after each write in that
characteristic. All updates in characteristics nested or called from this characteristic
will be included within the transaction.

• Paging screens commit every page of the commitable LS. With a paging screen, a

commit is performed for every page of data. The commit will occur when the user
hits F3 or page up/down.

• Updates/reports commit on exit of the commitable LS. A report, update or

Lsupdate characteristic will commit on completion of the characteristic

• Use commit point variable. When using automatic commits, you can still use the

commit command. This is especially important in large updates. You can use Pro-iv’s
‘commit point’ facility. This allows you to enter a numeric variable name. Pro-iv will

__
Copyright PROIV Technology Inc - 9 -

Relational Database Overview

then automatically maintain a counter in that field. This field can then be interrogated
within the characteristic and used to determine whether a commit is required.

__
Copyright PROIV Technology Inc - 10 -

Relational Database Overview

• Example 1 – Commitable flat screen. In this case, we can see that the highest level

characteristic with a table being updated is characteristic one. All other characteristics
are nested/called within that characteristic. All updates will be commited after each
iteration of characteristic one.

__
Copyright PROIV Technology Inc - 11 -

Relational Database Overview

• Example 2 – Commitable paging screen. This is very similar to example 1; in this

case, the COMPANY table is now in lookup mode. This means that the highest
characteristic with a table being updated is characteristic 2. In this characteristic, a
commit will be issued for each page of data and on exit of the characteristic.
When characteristic 2 has completed, there is NO commitable LS open.
When characteristic 3 is called, this will become the commitable LS. A commit will
be issued on exit of this characteristic.

__
Copyright PROIV Technology Inc - 12 -

Relational Database Overview

• Example 3 – Commitable paging screen. In this example, we have changed the

position of the call to characteristic 3. The updates in characteristic 3 will now be a
part of the transaction in commitable LS number 2.

__
Copyright PROIV Technology Inc - 13 -

Relational Database Overview

• Pro-iv with Triggers/PL/SQL. When you write your system, you may use triggers

and procedural SQL (PL/SQL). A trigger is attached to a table and is executed on a
pre-defined action such as a row insert. When Pro-iv inserts a row to such a table, the
trigger procedure will execute and further table updates may occur. When this
happens, the updates from the trigger belong to the same transaction as the Pro-iv
function. This also applies when you call a PL/SQL procedure; all of the updates
contained within that procedure would be a part of the current Pro-iv transaction.

__
Copyright PROIV Technology Inc - 14 -

Relational Database Overview

Pro-iv accesses ORACLE using SQL commands. SQL is ALWAYS used by Pro-iv.
When you use SEL-ONLY in a function, Pro-iv turns that into an SQL command. There
is therefore no difference in operation when using embedded SQL to SEL- commands.
Being able to embed SQL commands gives you much more control over row selection
but care must be taken as SQL commands can cause lots of extra work for ORACLE.
This is where good SQL training will pay dividends.

• Two types of SELECT. There are two types of select statement that can be used in

Pro-iv. The two types of select have different purposes. The first type is used to select
rows from a table, returning single or multiple rows. The second type is used to
collect summary data from a single/multiple tables. This will usually return one row.
Any select statement is valid, including nested queries.

• Type 1 – No fields defined. A type 1 SQL statement is used to select rows for

processing by the Pro-iv function. When you embed SQL in a Pro-iv function, you do
not specify the column names. Your SQL statement will look something like this:

SELECT FROM CLIENT
WHERE COMPANY_ID = :$COMP_ID
NB. When using this type of SELECT statement, the table name is the name of the
Pro-iv file definition.

• Pro-iv only requests fields from ORACLE that will be used in the function. The
reason that it is not necessary to define column names is that Pro-iv automatically
detects which columns are required in the function. Only these columns will be
passed back to Pro-iv.

__
Copyright PROIV Technology Inc - 15 -

Relational Database Overview

• Type 2 – fields defined. This type of select statement is typically used to return

summary data. An example would be to return the total value of a customers’ orders.
This would have the following syntax:

SELECT SUM(ORDER_VALUE) FROM ORD_LINE
WHERE ORDER_NUM IN (SELECT ORDER_NUM FROM ORDERS

 WHERE CUSTOMER_ID = :$CUSTOMER)

This SQL finds all of the orders for the selected customer id and then reads all of the
order lines, calculating the total order value for the customer. The reason that we use
this technique is that only one column is passed from ORACLE to Pro-iv, drastically
reducing the buffering and improving the performance.

• Needs a ‘dummy’ file definition in which to store the data. All select statements

are coded into before read or default logic. You need to put a ‘dummy’ file definition
into the function to store the result. Using type 2 select statements, a file definition
that matches the returning data needs to be used.
In this case, a ‘dummy’ file definition with one numeric field is required. After the
read, the numeric field will contain the total order value for the customer.

__
Copyright PROIV Technology Inc - 16 -

Relational Database Overview

• Any SQL command can be used. So far, we have looked at the use of SELECT

statements in before read logic and default logic. We can put other SQL statements
into our functions in ANY logic. This includes the use of DDL,DML and calls to
PL/SQL. We must remember to put the SQL in a logical place in terms of the
transaction.

• Use DELETE for multi-line deletes. An example of using SQL statements to

improve the performance of a function is the DELETE command. When you use Pro-
iv delete mode, the row is requested from ORACLE, passed back to Pro-iv (for
possible deselection) and then deleted. This is a lot of unnecessary work if you
merely want to delete the row. In fact, the row does not need to be passed back to
Pro-iv at all. See the next page for an example.

• Also UPDATE, INSERT. As above, you should also give consideration to the

UPDATE and INSERT commands in SQL.

• Pro-iv re-gen does not check the SQL syntax. Pro-iv does not check your SQL.

You should ensure that every embedded SQL is tested before making a function ‘live’

__
Copyright PROIV Technology Inc - 17 -

Relational Database Overview

• Using DELETE for multi-line deletes. Let’s consider an update that deletes all

orders for a client. We have an ORDER table and an ORD_LINE table for order
lines.
With ISAM, we would have a many time characteristic to delete each of the ORDER
and ORD_LINE tables. With SQL we can put the following logic in after write no
error of the client table:

DELETE FROM ORD_LINE
WHERE ORDER_NUM IN (SELECT ORDER_NUM FROM ORDERS
 WHERE CLIENT_ID = :$CLIENT)
DELETE FROM ORDER
WHERE CLIENT_ID = :$CLIENT

In this case, there is no buffering of data and no pre-delete reads. Performance will be
far superior. The only drawback is that you will not see this type of delete in a
file/function cross-reference.

__
Copyright PROIV Technology Inc - 18 -

Relational Database Overview

Some database objects work well with Pro-iv, others do not.

• Triggers. Triggers are very useful objects. You could add a trigger to your system

that deleted all order lines when the order header is deleted. This fits in well with the
Pro-iv transaction method.

• PL/SQL. PL/SQL is very efficient for mass updates. Care should be taken when

calling PL/SQL. If a PL/SQL fails, then Pro-iv is not aware of the failure. There are
system variables that contain the last ORACLE error code. These should be cleared
before calling the PL/SQL and interrogated once the PL/SQL has completed. If there
is an error code in these system variables, then you know that the PL/SQL failed.

• Constraints. Constraints put restrictions on data. A constraint may exist on a column

to say that it can have a value from 1 to 100. If a Pro-iv function allows a value
outside of that range, an error and rollback will occur upon commit. It is sensible to
keep all of the business logic within Pro-iv. Constraints are not recommended.

__
Copyright PROIV Technology Inc - 19 -

Relational Database Overview

There is a difference in the way that locking is handled when you use Pro-iv with
RDBMS. This is one of the major issues that you have to deal with when converting.
Understanding this issue is fundamental in a successful implementation of RDBMS.

• Default mode ‘C’ should be used sparingly. In a Pro-isam paging screen, with a

default mode of change, your rows are displayed without being locked. Only when
you actually enter a row is it locked. This is different when you used RDBMS. In this
case, all rows that you see have been read with update intent. This means that they are
all locked. If two users try to access the same set of data in change mode, one users’
screen will lock until the second user has finished. This typically occurs in simple
table maintenance functions. Maybe you have a country code maintenance paging
screen. If it has default mode ‘C’, then it will be a single-user screen with RDBMS !!

• Locks not released until COMMIT. With RDBMS, locks are held until a commit is

performed, another reason to be careful about transaction boundaries.

• ORACLE locks are not ‘visible’ to Pro-iv. Pro-iv requests information from

ORACLE. If the information is not returned, a ‘waiting’ message is displayed. Pro-iv
does not see ORACLE locks and therefore locking logic in Pro-iv will not be
executed. You can write a small global update in Pro-iv to see if the row is locked.
See the next page for details on how to write the update.

__
Copyright PROIV Technology Inc - 20 -

Relational Database Overview

• Write a ‘locking update’ – using NO WAIT. When we encounter a row lock, the

system will wait until the lock is released. This is not always acceptable. The above
example shows a global update that checks for a lock on the CUSTOMER table. The
first characteristic reads the table in change mode. The NO WAIT clause is specified
in the SQL in default logic. This will read the row in change mode if it is available
and cause a read error if it is locked. If we get a read error, we know that the row is
either locked or missing. We read the row in lookup mode to check that it exists.

• Interrogate the return code in the calling function. By the time the global update is

complete, we know the status of the row. We can then pass a return code back to the
calling function for example:
1) Row successfully locked.
2) Row already locked
3) Row not found
This return code should be interrogated in the calling function and appropriate action
taken.

• Be careful calling this update when auto commit is ON. If the transaction has not

already started in the calling function, this update will be the commitable LS. In that
case, a commit will be issued on exit of this update, clearing the lock.

__
Copyright PROIV Technology Inc - 21 -

Relational Database Overview

By now, you should be getting some idea of the issues that you will encounter when
converting your system. Here’s a summary of the main issues:

• Locking Issues. As we have seen, converting your functions as they are may leave

you with some locking issues.

• Date formats. ORACLE has its own date format. Specify this format in your external

type and Pro-iv will automatically convert the columns back to Pro-iv format when
reading/writing the table. It is important to do this as other tools and PL/SQL will not
understand Pro-iv dates.

• Data conversion. If you are converting data from Pro-isam, then you will need to

check the data format in the Pro-isam files before converting. For instance, your Pro-
iv file may have a number with a format of 5.2. Pro-iv uses variable length fields and
it is possible that you have data outside the boundaries of the field definitions. For
example you may actually have 309.827 in your 5.2 field. It is necessary to fix these
problems before converting your data as your database cannot handle these
inaccuracies.

• File Attribute Conversion Tool (FACT). This is a set of tools produced by Pro-iv

that assist in the conversion of your system. They handle conversion between Pro-
isam, Btreive, C-Isam, Ingres, Oracle and Dec RMS. The tools automate file
definition conversion, logical file update removal and the creation of file conversion
programs.

__
Copyright PROIV Technology Inc - 22 -

Relational Database Overview

• FACT – 80-95% of code fully functional after running conversion. After running
the FACT tools, your system will be operational. At this point, you should then look
at fine tuning the locking, transaction processing and performance aspects of your
system.

__
Copyright PROIV Technology Inc - 23 -

Relational Database Overview

• Failure to train a DBA. You don’t need a DBA with Pro-isam. Put your files in a

directory and that’s your administration complete! With ORACLE you need a trained
DBA. Tablespaces, clusters, extents, rollback segments, redo log files, control files,
database buffer cache, etc - these settings all have an impact on your system. Your
DBA will also be very useful at implementation time.

• Inefficient indexes. This also comes under the DBA role. Indexes are different when

using RDBMS. For example, an index on a column with a low number of values e.g.
male and female will actually slow data access down.

• Locking problems.

• Index Invalidation in Pro-iv functions. Your programmers now have the power of

SQL at their fingertips. They must be careful which SQL commands they use.
SELECT clauses such as LIKE, SOUNDEX, greater than, less than and substring will
‘invalidate’ indexes when used on key columns. For instance:

SELECT FROM CUSTOMER
WHERE CUSTOMER_NAME LIKE ‘PRO%’

An index on CUSTOMER_NAME will not be used in this select because it has been
invalidated with the LIKE clause. Instead the whole customer table will be read and
the relevant rows returned. This is very bad for performance.

• Forgetting to set up the commit method. It is a very common mistake to forget to
set up the commit method in a function. The function will operate differently when

__
Copyright PROIV Technology Inc - 24 -

Relational Database Overview

auto commit is on or off. This is why we recommend using global logics on entry to
each transaction to set the commit method.

• Too many commits. Another common problem is to go ‘over the top’ in terms of

commits. Only issue a commit when you need one, too many commits will affect the
performance of the entire system.

__
Copyright PROIV Technology Inc - 25 -

Relational Database Overview

Finally, let’s take a look at some of the more pertinent tuning tips:

• 50% DBA, 50% programmer. So far we have discussed how to write code using the

Pro-iv/RDBMS interface. The way that your tables are organized has a profound
impact on performance, as does the physical organization of the database on the
disks. Do not underestimate the power of your DBA in the tuning process

• Reduce the buffer size. In every characteristic, in every program, you should look

for ways to reduce the size of the data sent from ORACLE to Pro-iv. You should
ensure that the programmers fully understand the impact of passing unnecessary data
to Pro-iv.

• Use SQL instead of DSEL. To reduce the buffer size, only the required rows should

be returned from ORACLE. You do this by coding good SQL. Don’t worry about the
size of the SQL statements, as long as you don’t invalidate the index, it is always
faster to de-select rows using SQL than passing them back to Pro-iv for de-selection.
Sorting of data should be done in SQL using the ORDER BY clause. Use sort select
sparingly

• Use PL/SQL and Triggers. For mass updates, PL/SQL is faster than Pro-iv. Triggers

are also useful ways of performing common updates.

• Use lock-check updates. These updates, when called from before read logic, enable

you to give control back to the user when you hit a row lock.

__
Copyright PROIV Technology Inc - 26 -

Relational Database Overview

__
Copyright PROIV Technology Inc - 27 -

	SELECT FROM CUSTOMER

