

ProIV IDE

(Integrated Development Environment)

Writer: Rob Donovan

Company: Parallax IT LTD

Published: March 2011

Summary: This document discusses the advantages of using ProIV IDE in a

development, analysis and production support environment.

Overview
ProIV has never had a solid well designed development environment, and has been

seriously underdeveloped for many years. Many coders and sites over time have

therefore been obliged to write their own utilities to help with more efficient

development.

Several attempts by the owners of ProIV have tried to address some of these problems,

but they have failed to integrate and unify the development process.

To some extent they have actually made it harder to code and visualize the ProIV flow of

code.

It was clear that the ProIV community needed a method to group these tools into a

single development environment which would be designed and laid out in an intuitive

and visually pleasing way. This need gave birth to ProIV IDE.

Over many years the developer of ProIV IDE consulted with ProIV coders around the

world to try to find the best way to present a ProIV function and integrate tools into the

environment the best way to make development not only more fun, but also more

productive.

ProIV IDE is the best way to make development not only more fun, but also more

productive and it speaks to developers in a way that makes sense.

Many of the ideas and features in ProIV IDE have been directly requested or inspired by

some of the world’s top ProIV specialists.

It’s not just a development tool; it’s a whole environment for ProIV. It greatly helps in

the process of Analysis, system design and IS/DS writing.

Also, with ProSQL and other utilities in ProIV IDE, production support and error finding

tasks can be hugely reduced and simplified.

Some of the world’s top ProIV coders have said that ProIV IDE can easily reduce

workload by 25-30% when using ProIV IDE over other ProIV tools.

This has a positive and desired effect on the company’s bottom line, enabling developers

to deliver solutions to the market quicker, with the highest quality achievable compared

to any other ProIV development environment.

So, what does ProIV IDE give you?

The following paper has been written to explain how ProIV IDE works. Described herein

are the features and tools available that make ProIV IDE the best choice of

environments. Thereby allowing a development team to excel.

History
ProIV IDE development started out some 12 years ago. The first version never really got

out of development, due to problems with trying to communicate with ProIV.

After a few years of little development, the main development work started again in

2001.

After many years of work and testing, it started to get used at a site in Australia and

then in 2006 in Sweden.

In 2009 the source code was moved to the offices of a small UK IT company called

Parallax IT LTD.

ProIV IDE is continually developed and maintained, and new features and ideas are

added, to continue to make it the fastest development tool for ProIV.

About the developer
ProIV IDE is the brainchild of long term ProIV developer, Rob Donovan who has worked

in ProIV since 1989, working at various sites around the world.

His main focus has been on performance and utilities for the language, but has also been

involved with lots of development for many applications.

Not only coding in ProIV, he has experience in VB, C, PHP & web development. He is also

experienced in Unix / Linux and the Windows OS, and also file/databases including

Oracle, MySQL & C-ISAM.

He’s also helped debug and improve performance on the Linux kernel, mainly to help

with C-ISAM and ProIV, and also the author of www.proivrc.com, the ProIV Resource

Center.

How it works
ProIV IDE is written in Visual Basic, incorporating some 3rd party controls to keep up with

modern interfaces and design. It includes controls from Component One for grid control

& Innovasys for the docking, windows and navigation UI. Both these companies have

commercial products that are integrated in many applications.

ProIV source code is stored in a group of ProISAM files (known as the bootstrap files),

only accessible from within the ProIV environment.

So there are 2 parts to ProIV IDE.

Client Side

The client side of ProIV IDE is the application that sits on the developers PC and what

they use to ‘edit’ the ProIV code.

It needs to be installed on the user’s

PC, and it uses SSH connections to the

server to communicate with ProIV.

Server Side

The server side consists of a

controlling Unix script and ProIV

functions that extract & import the

ProIV source code to and from the

client. It also performs other server

side operations that are more suited to the server side for performance. All

communication is passed via a flat file method in a specific format designed for ProIV

IDE.

All transfers are zipped for compression and SSH is used to ensure security. All

connections are using standard SSH login and password methods.

The Client and Server can be located within an internal corporate network or even across

the internet and the connection is stateless, which allows ProIV IDE to recover from any

network loss, seamlessly.

All changes made to the ProIV code are initially stored on the client side, and then sent

to the server when the user decides to ‘save’ the changes.

ProIV code, once loaded from the server can also be saved client side, in text format for

future loading and examination. Typically useful for if user knows they won’t have a

connection to the server and still wish to look at the ProIV code.

Features

Main Editing window

This is the main window in ProIV IDE. The user can get an immediate overview of the

function here, and see the whole function in one view.

From a developer’s perspective, this overview is one of the key strengths of ProIV IDE

and allows the developer to take in the function at a glance and not have to drill down

several menus to get a picture of how the function behaves.

Multiple Functions, Files,

Global Logics & Tasks can

be opened and easily

navigated between in one

easy to view place.

Developers can switch

quickly between multiple

functions, even copying

chunks of code between

different functions easily.

All windows and panes can

easily be moved, resized

and tabbed with standard

windows docking

techniques, and no modal

windows are used that

stop the user for being

able to get to other

windows.

Once an item has been opened, all movement and modifications are done locally, so

speed of navigation is very fluid and quick.

Everything the user needs to see to get a general overview of the function is displayed

once the function has been opened. The developer can move, resize or close any of the

windows if they wish. All window settings will be saved automatically.

Logic Editor

This is the window used to edit the actual ProIV ‘code’ part of a function. It’s fully colour

coded & formatted. A history bar at the top keeps track of recent logic IDs, and shows

where the logic is called from. Right click menu, and toolbars also expose all utilities

regarding logic.

Some logic utilities are:

• Copy, Cut & Paste

• Comment blocks

• Indent blocks

• Print

• Auto-Indent

• Logic snapshot

• Auto get of file fields

• Bookmarks

Other features like Compile error highlighting, double click loading for global functions,

Auto Logic ID generation, and auto complete make editing logic very easy and quick.

As the developer types, syntax tooltips pop-up, giving them information on what the

syntax of the current command is.

This further helps the developer by helping to eliminate possible errors in their code

even before the function is compiled, once again adding to the speed with which they

can develop.

Painter

The painter window allows the developer to view the screen designs in a graphical way,

and allows them to drag & drop fields and layouts, making screen design / creation and

modification quick and painless.

The painter clearly depicts

screen boundaries, paging

screen areas and windows,

and treats them as objects

that can be moved and

positioned.

Highlighting of fields is used

to show which items are

‘editable’ by the user, once

the screen is running.

Clicking on each item

displays the full properties

for that item in the

‘Properties’ window.

Tree View

This is a unique alternative design view that is based upon the ProIV timing cycle. It also

displays the function in a more graphical and modern way, compared to the traditional

way a function has been viewed.

All parts of the function are

displayed here, and the user

can get a full overview of the

function easily, collapsing /

hiding parts that aren’t

needed in their current

development or analysis.

The function is displayed in a

logical way, using the ‘tree’

feature to allow a visual way

to display the ProIV timing

cycle.

This can give a clear display of how a function will actually run.

This feature is especially helpful to new coders. By utilizing it they are able to

understand the ProIV timing cycle quicker than with other ProIV environments.

Seasoned developers also find this view useful as a way of getting the grand overview of

the function.

Undo/Redo

Traditionally, when editing ProIV code, once the user types a

line and moves away from that line, the change was

immediately committed to the code base. With IDE changes are

only saved back to the code base (on the server) when the

user specifically presses ‘save’. There is also a window that

tracks all changes made and gives the user the ability to undo

and redo any changes recently made. This is typical of most

windows applications, but something that has never before

been available in such a way to the ProIV developer.

Column Design

In the function grids window, for example the ‘Cycles’ window,

it is possible for the developer to add/remove and re-position all the columns to fit their

needs. Cycles have numerous properties / columns, but a lot of them aren’t needed most

of the time. These can be hidden so that they don’t clutter up the display. All properties

are always displayed in the ‘Properties’ window though, either sorted alphabetically or by

groups.

This column design allows the developer to design/shape ProIV IDE to how they want to

use it, meaning each developer gets an environment they are comfortable with and

ProIV IDE can look radically different to each developer.

These settings can all be saved and later loaded in profiles with a click of a button.

Profiles can help greatly in a training environment, as the trainer can setup different

profiles that show different parts of the function or columns as and when that part is

being taught.

Searching (In Function)

The search window, searches through all

elements of the function (logic, screen

fields, global interfaces etc.) and

displays the results in a window.

Clicking on an individual result, makes

ProIV IDE move to that place in the

main window, so the code around the

search result can be viewed.

This is an extremely useful tool in

finding out how certain variables, fields

or files are used within a function.

Once a search is done the user can press

the snapshot button to keep the results in a window, while they then search for further

items. This all makes searching very simple and allows the developer to still be able to

edit the function while viewing the results.

Lists

Lists are an easy way to group certain functions, so that later they can be manipulated.

The user can create lists manually or automatically from some of the other utilities in

ProIV IDE.

Once a list is created the following can be done.

• Regen

• Use as a filter for File/Function Xref

• Use as a filter for Search

• Print

So they can build a list based on a File Xref, and then search all those functions with the

search option for a certain field in logic.

This can considerably reduce the amount of time it takes to find what they are looking

for, and can be a powerful tool for finding exactly what needs to be changed in a large

system.

Search (System wide for logic)

Most of the ProIV code is done in logic. So this is a utility that will search through all the

logic in the system (or restricted by a list, or partial search). Filters exist to allow

removal of unused functions, utilities or other functions that are not part of the main

system, to allow the user to centralize their search on the relevant part of the system.

Once the results are displayed, each item can be double clicked, and the relevant

function will be loaded up into ProIV IDE.

Options exists also narrow the search to Global Logics, Comments or Case Sensitive

searches.

File/Function Xref

This utility will list all the functions that use a specific file, displaying all the results in a

formatted window that can then be used to load up the functions. The same filters and

lists that can be used in the Search utility are also linked into this utility.

Options exist also to narrow the Xref to certain file modes, clear flags and also to include

alternate file definitions in the Xref.

Display Used…

These utilities show where objects are used and the frequency of their use in a function.

They help a developer find certain

objects in the code quickly and easily.

Scratch Vars

This window displays all scratch variables

in a function, and where they are used.

Also next to each variable can be a note

if the variable has a problem, like being

used but not assigned. This is extremely

useful for finding typing / spelling

mistakes in variable names, and helps

prevent many bugs from leaving the

development area.

Other objects displayed are ‘Value Variables’, ’Global Logics’ and ‘Global Functions’.

Printing

Printing is sometimes required to be able to visualize a large function.

Any Function, File, Global Logic or Task can be printed in full (including Logic colouring).

Also any lists, searches or Xfers can be printed.

Most windows have a Print icon that allows the contents to be printed.

Dead Code

This utility lists all the code in a function that isn’t actually called. This window can be

used to identify the code and allow the developer to easily remove it, making the

function more readable and easier to edit in the future.

QA Checks

This utility performs a list of over 60 checks on the code, to make sure the developer

hasn’t made technical mistakes in the code that can cause bugs, difficult code to follow

or code that isn’t actually doing anything.

It helps to maintain the ProIV code in a good state, and saves on time as any potential

problems that may have been picked up later at the QA stage are found immediately and

can be rectified by the developer.

Function Literals

This utility lists all literals in the function (text in quotes or numbers).

It helps as a check to make sure literals are correct. For example, maybe a certain

function uses the code ‘CORR’ a lot in the function and there is a lot of code checking

this text. This window would ‘highlight’ if there are any places in the function where the

text had been typed incorrectly, say as ‘COR’. This will help reduce bugs at development

time.

Function Links

This window displays how functions link to each other.

It is automatically created for the

developer by analyzing the code in the

system.

However, since the developers can develop

their own menu systems and linking, which

can be held in ‘non ProIV’ data files, there

is also an option to allow the developer to

write his own module in ProIV that allows

them to link in their own menu system

links.

This then allows the developer to see the

full function flow and to easily find which function is needed to be changed or how to

actually run the function from their system.

This Function Linkage flow is used extensively by ProIV Analysts when designing

solutions.

Bootstrap searching

The ProIV code on the server is held in what is called the Bootstraps. This is a collection

of ProISAM files. These files are what ProIV IDE uses to load up the function and save

the changes back to. The ProIV kernel then ‘compiles’ these bootstrap files and creates

‘gen code’ which is what is then run.

Although ProIV IDE

has many utilities that

search and

manipulates these

bootstrap files, there is

always going to be a

situation where ProIV

IDE’s standard search

methods do not match

the exact search

method that the

developer wants.

So, there is a utility in

IDE that allows the

developer to search

the bootstrap files

using the individual files and fields, giving them the ability to effectively create their own

search utilities.

Auto Updates

ProIV IDE on startup checks to see if there is a new version available, and if so,

automatically downloads and installs it.

This can reduce support and maintenance costs, and also makes sure all your developers

have the most current version.

This option can be disabled server side, if needed.

Bootstrap file locks

When a developer gets a record lock on one of the source files (i.e. Bootstrap files), the

only information they get is that it’s locked, and they just have to wait until the other

user removes the lock. Other developers can lock the source code sometimes for hours if

they have many sessions open, and leave one idle.

This window displays all the record locks on the system, and which developers has each

one, time of the lock and what Process ID and terminal. This allows the developer to

contact the other developer and request they unlock the file.

ProSQL

This is a very powerful function creator.

It converts standard SQL SELECT statements into ProIV functions that can extract data

out of any of your applications data files.

It’s specifically targeted at Production Support type roles, allowing data to be found

using common SQL syntax.

Once the data has been found, it can then be saved in CSV format and used in other

programs like MS Excel.

It can also help developers and testers, as it makes it easy to find data that they need to

check or create.

It saves large amounts of time, in that the developer/tester/production support doesn’t

have to write a ProIV function to find the data, it’s created automatically from the

ProSQL for them.

Conclusion
ProIV IDE has been written to make development easier and quicker.

All navigation has been optimized. The utilities and options have been put in places that

are not only logical/valuable, but they are also easy to access.

It’s easier to view and understand a function (and the whole system) in ProIV IDE than it

is any other ProIV editor currently available.

Using ProIV IDE will significantly decrease your development times, improves quality and

time to market. It helps the Business Analysts to analyze and specify changes to your

system with the minimum of fuss.

Production support and data analysis can be helped also through the use of ProIV IDE

and ProSQL.

Technical specs

Visual Basic 6: 72,000 Lines of code, 1000 controls, with 2500+ procedures.

ProIV Code: 10,000 lines of code in over 100 functions.

Server side: Proiv versions 4, 5 or 6

Client side: Windows XP, Vista and Win 7

